POLAROGRAPHISCHE UNTERSUCHUNGEN AN DICARBONIUMIONEN UND BIRADIKALEN DER TRIPHENYLMETHAN-REIHE

W.Sümmermann, G.Kothe, H.Baumgärtel, H.Zimmermann
Institut für Physikalische Chemie der Universität Freiburg
78 Freiburg, Albertstraße 21, Deutschland

(Received in Germany 9 August 1969; received in UK for publication 18 August 1969)

Unsere polarographischen Untersuchungen an Carboniumionen und Radikalen der Triphenylmethan-Reihe ¹⁾ wurden auf Dicarboniumionen und ihre Reduktionsprodukte ausgedehnt. Dicarboniumionen und Dicarbanionen bilden die Endstufen des folgenden mehrstufigen Redoxsystems:

Für a und e erwartet man einen Singulett-, für b und d einen Dublettgrundzustand; der Grundzustand von c kann ein Singulett, Triplett oder Biradikal sein. Die folgenden Verbindungen wurden bei den polarographischen Messungen analysenrein eingesetzt. Darstellung und Eigenschaften der neu synthetisierten Verbindungen IIIa, IVa, Va, Vc und VIa werden an anderer Stelle ausführlich veröffentlicht.

3808 No.43

Ic, IIc und IIIc besitzen einen Singulettgrundzustand²⁾. Lösungen von IIIc zeigen einen geringen Paramagnetismus, der mit verschiedenen Methoden untersucht wurde³⁻⁸⁾. Eine eindeutige Erklärung für diesen Paramagnetismus konnte bisher nicht gegeben werden⁹⁻¹²⁾. Waring und Sloan postulieren ein Gleichgewicht zwischen offenen und cyclischen Polymeren⁸⁾. Demgegenüber kann nach Morozova und Dyatkina eine niedrige Gleichgewichtskonzentration an Triplettmolekülen bei Raumtemperatur nicht ausgeschlossen werden²⁾. Die Multiplizität der Grundzustände von IVc bis VI_cist noch nicht aufgeklärt. Experimentelle Untersuchungen werden durch die Assoziation dieser Verbindungen erschwert. Die polarographischen Messungen wurden bei 25°C in wasserfreiem Benzonitril mit Tetrabutylammoniumperchlorat als Leitsalz ausgeführt¹⁾¹³⁾. Die Halbstufenpoten-

tiale sind auf ¹/₂ 1omV reproduzierbar (Tabelle 1 und 2).

Halbstufenpotential: E (mV); Richtungsfaktor: S = dE/dlog(i/i_d-i)¹⁴⁾(mV);

Bildungskonstante: K_b=c_b²/c_a·c_c; Bezugselektrode: Ag/AgCl in Benzonitril

Tabelle 1

Verbind.	Lit.	Meßelektr.	E _{ab} bzw.E _{ba}	S	Eac	S	E _{be} bzw.E _{cb}	S	Къ
Ia	+)	Kathode	-				-		-
Ic	-	Anode	1775	47		ļ	1515	60	3.10 ⁴
IIa	16	Kathode	1040	64			85o	56	2.10 ³
IIc	17	Anode	1050	64			845	65	3.10 ³
IIIa	18	Kathode	680	64			460	65	5.10 ³
IIIc	19	Anode	685	58			465	64	5.10 ³
IVa	18	Kathode			440	70			
IVc	20	Anode		1	430	86			
۷a	18	Kathode			470	96			ı
V,c	18	Anode			440	94			
VIa	18	Kathode			485	78			
4.5			•					4 - 1	

⁺⁾ Versuche zur Darstellung von Ia ergaben 9,10-Diphenyl-phenanthren 15)

No.43

Verbind.	Lit.	Meßelektr.	Ecdbzw.Edc	S	Ece	s	E _{de} bzw.E _{ed}	S
Ic	++)	Kathode	-		_		-	
IIc	17	Kathode	-1450	69			-1745	70
IIIc	19	Kathode	-1045	75			-1385	57
IVc	20	Kathode			- 99o	104		
Vc	18	Kathode			-916	85		

Tabelle 2

++) Die Potentiale sind in dem verwendeten Lösungsmittel nicht mehr meßbar.
M.Szwarc et al. haben in Hexamethyl-phosphorsäuretriamid zwei Reduktionsstufen gefunden 21).

Die Elektrodenreaktionen der Redoxgleichgewichte a/b und b/c sind reversibel; Oxydations- und Reduktionshalbstufenpotential besitzen den gleichen Wert. Die Reversibilität der Redoxgleichgewichte c/d und d/e wird zur Zeit durch Oxydation der Dianionen e untersucht.

Die Diffusionsgrenzströme der kathodischen Stufen E_{ab} und E_{bc} und der anodischen Stufen E_{ba} und E_{cb} sind gleich groß; entsprechendes gilt für die kathodischen Stufen E_{cd} und E_{cb} . Bei der Reduktion des Carboniumions IIa tritt zusätzlich eine irreversible Stufe bei 500 mV auf, die wir auf Ionenpaarbildung zurückführen; ähnliche stabile Ionenpaare wurden bei Tetraphenyläthylen-anionen durch Leitfähigkeitsmessungen in THF nachgewiesen 22). Die Werte der Richtungsfaktoren S zeigen, daß bei allen reversiblen Stufen der Verbindungen I bis III Einelektronenübergänge stattfinden. Die Verbindungen IV bis VI ergeben eine Stufe beim Potential E_{ac} . Die genaue Analyse dieser Stufen zeigt, daß es sich um zwei bzw. drei sehr nahe beieinanderliegende Einelektronenübergänge handelt.

Die Oxydationshalbstufenpotentiale sind ein Maß für die erste und zweite Ionisierungsenergie der Verbindungen c. Bei der Ionisierung wird ein Elektron aus dem obersten besetzten T-Elektronenterm abgegeben. Die Lage und Besetzung dieses Terms hängt unter anderem von der Wechselwirkung der über die Brücke X verbundenen Monoradikale ab. Erstes und zweites Ionisierungspotential von c sind nur dann gleich, wenn keine Wechselwirkung besteht (Biradikalgrundzustand). Wechselwirkung der Radikalhälften führt zur Ausbildung von Triplett- oder Singulett-grundzuständen.

Aus der Differenz der Halbstufenpotentiale E_{ab} und E_{bc} läßt sich die Bildungs-konstante K_b der Radikalcarboniumionen berechnen²³). Entsprechendes gilt für die Radikalanionen d. Die Verbindungen b können nur dann aus einem Gemisch von a und c isoliert werden, wenn K_b genügend groß ist; die Verbindung IIb wurde bereits in Substanz gewonnen¹⁶⁾²⁴). Wir haben IIb durch Elektrolyse von IIa im Probenraum eines ESR-Spektrometers nachgewiesen; Untersuchungen über die ESR-Spektren von Radikalkationen b und Radikalanionen d sind im Gange.

Literatur

- 1) G.Kothe, W.Sümmermann, H.Baumgärtel, M.Zimmermann, Tetrahedron Letters 1969,
- 2) I.D.Morozova, M.E.Dyatkina, Russian Chemical Reviews, 37, 376 (1968)
- 3) E.Müller, I.Müller-Rodloff, Liebigs Ann. Chem., 517, 134 (1935)
- 4) G.M.Schwab, N.Agliardi, Ber.dtsch.chem.Ges. 73, 95 (1940)
- 5) C.A.Hutchinson, A.Kowalsky, R.C.Pastor, G.W.Wheland, J.Chem.Phys. 20, 1485
- 6) H.S.Jarrett, G.J.Sloan, W.R.Vaughan, J.Chem.Phys. 25, 697 (1956) (1952)
- 7) D.C.Reitz, S.I.Weissman, J.Chem. Phys. 27, 968 (1957)
- 8) R.K.Waring, G.J.Sloan, <u>J.Chem.Phys.</u> 40, 772 (1964)
- 9) H.McConnell, J.Chem.Phys. 33, 115 (1960)
- 1o) H.McConnell, J.Chem.Phys. 33, 1868 (196o)
- 11) R.Bersohn, Ann.Rev.Phys.Chem. 11, 382 (1960)
- 12) A.N.Burshtein, Yu.M.Naberukhin, Dokl.Akad.Nauk SSSR 140, 1106 (1961)
- 13) W.Sümmermann, Dissertation, Freiburg 1969
- 14) J. Tomes, Collect. Czechoslov. Chem. Commun. 7, 198 (1935)
- 15) H. Hart, T. Sulzberg, R. R. Rafos, J. Am. Chem. Soc. 85, 1800 (1963) Fußnote
- 16) H.Hart, J.S.Fleming, J.L.Dye, <u>J.Am.Chem.Soc</u>. <u>86</u>, 2079 (1964)
- 17) J.Thiele, H.Balhorn, Ber.dtsch.chemGes. 37, 1463 (1904)
- 18) G.Kothe, Dissertation, Freiburg 1969
- 19) A.E.Tschitschibabin, Ber.dtsch.chem.Ges. 40, 1810 (1907)
- 20) E.Müller, H.Pfanz, Ber.dtsch.chem.Ges. 74, 1051 (1941)
- 21) A.Cserhegyi, J.Jagur-Grodzinski, M.Szwarc, <u>J.Am.Chem.Soc</u>. <u>91</u>, 1892 (1969)
- 22) R.C.Roberts, M.Szwarc, J.Am.Chem.Soc. 87, 5542 (1965)
- 23) R.Brdicka, Z.Elektrochem. 47, 314 (1941)
- 24) E.Weitz, F.Schmidt, <u>Ber.dtsch.chem.Ges</u>. <u>75</u>, 1921 (1942) ebenso E.Weitz; <u>Angew.Chem</u>. <u>66</u>, 658 (1954)

Der Deutschen Forschungsgemeinschaft und der Badischen Anilin- und Sodafabrik AG. danken wir für Personal- und Sachbeihilfen.